【LLM GPT】李宏毅大型语言模型课程

news/2024/7/12 2:35:19 标签: gpt, 语言模型, 人工智能

目录

  • 1 概述
    • 1.1 发展历程
    • 1.2 预训练+监督学习
      • 预训练的好处
    • 1.3 增强式学习
    • 1.4 对训练数据的记忆
    • 1.5 更新参数
    • 1.6 AI内容检测
    • 1.7 保护隐私
    • 1.8 gpt和bert
    • 穷人怎么用gpt
  • 2 生成式模型
    • 2.1 生成方式
      • 2.1.1 各个击破 Autoregressive
      • 2.1.2 一次到位 Non-autoregressive
      • 2.1.3 两者结合
    • 2.2 预训练和微调
    • 2.3 指示学习 instruction learning 和 上下文学习 in-context learning
      • 2.2.1 上下文学习 in-context learning
      • 2.2.2 指示学习 instruction learning
      • 2.2.3 chain of thought (CoT) prompting
      • 让模型自动生成prompt
    • 2.3 训练数据的预处理
    • 2.4 Human Teaching (强化学习)
    • KNN+LM
    • 2.5 信心越高,正确率越高
  • 让AI 解释AI
    • 如何判断解释的好不好?
    • 大致流程

1 概述

怎么学习?——给定输入和输出:
在这里插入图片描述
但是这样做不现实,因为这样输入-输出需要成对的资料,而chatgpt 成功解决了这一个难题。

chatgpt不需要成对的资料,只需要一段有用的资料,便可以自己学习内容,如下:
在这里插入图片描述

1.1 发展历程

初代和第二代gpt
在这里插入图片描述
第二代到第三代
在这里插入图片描述
gpt3还会写代码
在这里插入图片描述
其性能表现
在这里插入图片描述
但是gpt3也有缺点在这里插入图片描述

1.2 预训练+监督学习

想要实现chat的功能,就得经过一个监督式学习(问答),就要在预训练后,增加一个监督学习的流程,赋予模型问答能力
在这里插入图片描述

预训练的好处

在多种语言上做过多训练以后,某一语言的任务会帮助其他语言学会同样的任务。

在这里插入图片描述
在这里插入图片描述

实验数据如下:
在这里插入图片描述

1.3 增强式学习

chatgpt还引入了增强式学习,给好的回答更多奖赏回馈。
在这里插入图片描述

1.4 对训练数据的记忆

其能够记得训练数据的部分信息:
在这里插入图片描述

1.5 更新参数

可以通过对话改变其记忆:

在这里插入图片描述

1.6 AI内容检测

检测某一段文字是否为AI生成的,最简单的做法是这样:
在这里插入图片描述

1.7 保护隐私

有时候模型会泄漏训练数据,需要遗忘学习:
在这里插入图片描述

gptbert_53">1.8 gpt和bert

一个是做文字接龙,一个是做文字填空:
在这里插入图片描述

gpt_56">穷人怎么用gpt

方法1 缩短输入


把多个问题一起丢进去:
在这里插入图片描述
方法2 自建模型

方法3 LLM cascade

2 生成式模型

主要分为以下三种,注意英文的token指的不是单个完整的单词,而是要把一个单词拆分成前缀后缀的形式,拆解成更小的单位:

在这里插入图片描述

2.1 生成方式

生成式有两种策略——各个击破一次到位,下面先介绍各个击破

2.1.1 各个击破 Autoregressive

每次生成一个(token),然后按照序列形式把全部完整的内容生成:
在这里插入图片描述
这种方式生成效果好,但是所需要的时间长。%

2.1.2 一次到位 Non-autoregressive

x需要先设定最大输出长度,由于不需要每次都保证输出的内容一样长,需要一个end标志符表示结束。
在这里插入图片描述
两者比较:
在这里插入图片描述

2.1.3 两者结合

在这里插入图片描述

2.2 预训练和微调

一般都是先训练一个通用模型,然后在某些任务上做微调(finetune)。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2.3 指示学习 instruction learning 和 上下文学习 in-context learning

和chatgpt进行交互的时候,我们的promt可能包可以分为两种情况:指示学习 instruction learning 和 上下文学习 in-context learning。所以在模型训练阶段,我们需要制造一些成对的语料数据加强模型的这两种学习的能力。

前者是给模型一些指示,当模型进行学习和回答,后者是通过一些例子,让模型进行学习和回答。

2.2.1 上下文学习 in-context learning

即让机器在例子中进行学习。为got提供一些例子,比如情感分析中:
在这里插入图片描述
但是不同于传统的模型更新(梯度下降),这里gpt的学习,不会更改其模型参数。
通过例子,虽然不会提升多少情感分析的能力,而是为了唤醒gpt的情感分析能力,这个结果来自一篇文献的实验结论。
在这里插入图片描述

2.2.2 指示学习 instruction learning

gpt能够看懂指令:
在这里插入图片描述
一个指示学习的例子:判断这句话的情感:给女朋友买了这个项链,她很喜欢。选项:A=好;B=一般;C=差。

训练阶段和测试阶段,可以是不同的任务的指示。
在这里插入图片描述
用人类的语言训练:
在这里插入图片描述

2.2.3 chain of thought (CoT) prompting

让模型给出推理过程,这样能够让模型做出更正确的答案。
在这里插入图片描述
让模型具备这个能力,就得在模型训练阶段给出这样的“带有推理过程”的语料。
在这里插入图片描述

让模型自动生成prompt

这里的promt也可以理解为指令。
1。 使用 soft prompt
之前我们讲的都是hard prompt,但其实还有soft prompt,给一堆向量而不是人类语言。
在这里插入图片描述
2. 使用强化学习。
在这里插入图片描述
3. 让模型自己寻找,下一些特殊指令:
在这里插入图片描述
最佳指令可以极大的提升模型的性能:
在这里插入图片描述

2.3 训练数据的预处理

数据的收集和处理需要用到以下内容:
在这里插入图片描述
去掉重复资料的重要性:假设一段话在训练数据中出现了6w多次,会发现模型很容易说出这些话,因此应该避免这种情况。

在固定运算资源的情况下,如何选择模型规模和数据集规模?有人做了相关实验,一条线表示固定的运算资源情况下的结果,纵轴的越小越好:
在这里插入图片描述
所以要找到每个U型曲线的最低点,把这些最低点串起来可以得到如下的图:
在这里插入图片描述
模型规模和资料最佳适配比:
在这里插入图片描述
除此以外,指示学习(instruction-tuning)也可以大大提升模型的性能。
在这里插入图片描述
在这里插入图片描述

2.4 Human Teaching (强化学习)

这也是一种辅助模型训练的技术(强化学习),可以有效提高模型的性能,让小模型吊打大模型的性能。
在这里插入图片描述

在这里插入图片描述

KNN+LM

一般的LM是这样的运作方式:
在这里插入图片描述
而KNN+LM是这样的,寻找embedding的相似度
在这里插入图片描述
这样做会带来什么神奇的效果?
d
但是这种语言模型非常的慢

2.5 信心越高,正确率越高

在这里插入图片描述

让AI 解释AI

来解读一下这篇文章:
在这里插入图片描述
解释什么?——知道每一个神经元的作用、和哪些词关联度最大:
在这里插入图片描述
有工作发现了某一个神经元遇到以下词时输出会很大,通过观察发现,下一个会出现“an”:
在这里插入图片描述
在这里插入图片描述
如何操作?输入以下promt:
在这里插入图片描述
能得到以下结果:
在这里插入图片描述
其他结果:
在这里插入图片描述

如何判断解释的好不好?

在这里插入图片描述
然后去gpt2模型找到那个神经元检查一下:
在这里插入图片描述

完整的prompt

在这里插入图片描述
纵轴表示可解释性的分数,分数越高,可解释性越好,结论是小模型更容易解释、越底层的神经元越容易解释。
在这里插入图片描述

大致流程

在这里插入图片描述
让模型扮演一个神经元:
在这里插入图片描述
寻找神经元在什么时候激活值较大:
在这里插入图片描述


http://www.niftyadmin.cn/n/444694.html

相关文章

【HBZ分享】FactoryBean的应用 与 BeanFactroyPostProcessor的应用 与 BeanPostProcesser的应用

FactoryBean的应用实战 需要写一个A类来实现FactoryBean实现FactoryBean的3个方法,即getOject(), getObjectType(), isSingleton()注意:在通过xml的【 】标签或者通过注解方式将A类注入容器的时候,返回的实例不是A类,而是T类&…

【MySQL】选择专题(九)

文章目录 选择题选择题 【单选题】数据恢复的建立冗余数据的常用技术( A )。 A. 数据转储和登记日志文件 B. 数据备份和加密技术 C. 视图与审计 D. 数据库镜像 【单选题】如果事务T获得了数据项Q上的排它锁,则T对Q( D )。 A. 只能读不能写 B. 只能写不能读 C. 不能读不能写…

基于matlab对现代相控阵系统中常用的子阵列进行建模分析

一、前言 本示例说明如何使用相控阵系统工具箱对现代相控阵系统中常用的子阵列进行建模并进行分析。 相控阵天线与传统碟形天线相比具有许多优势。相控阵天线的元件更容易制造;整个系统受组件故障的影响较小;最重要的是,可以向不同方向进行电子扫描。 但是&#xff…

从零开始搭建群众权益平台(六)

本篇博客我们将继续完善处理错误,显示加载指示器,实现表单验证,处理跨域请求等。 错误处理: 在前端代码中,我们应当为所有网络请求添加错误处理逻辑。例如,如果后端返回了一个错误码,我们应当…

LIN-物理层(收发器)

文章目录 一、显性和隐性二、LIN的供电电压说明三、LIN通道数3.1 单通道3.2 双通道3.3 四通道 一、显性和隐性 LIN总线协议规定其物理层收发器的显性(Dominant , 逻辑 “ 0”,电气特性为GND(0V))和隐性电平(Recessive , 逻辑 “ …

15-5.自定义组件的通信

目录 1 构建组件间的父子关系 2 父向子传值-属性绑定 3 子向父传值-自定义事件 4 获取组件实例 1 构建组件间的父子关系 需要在father1.json中引入son1,然后再father.wxml中使用son1 2 父向子传值-属性绑定 属性绑定很像props。属性绑定只能传递普通类型…

ER图和对应关系模式(只写关键)

本图用Visio进行绘图: ●矩形框内表明实体名 ●菱形框内表明联系类型 ●椭圆框内表明属性,可以是实体的属性,也可以是联系类型的属性 ●关键码的属性,在属性名下加下划线 ER图转关系模式说明: ER图中间含1&#xf…

存储笔记8 ipsan

Module Objectives IP SAN的组件 IP SAN的好处 描述SAN中的IP融合及其影响 描述的基本架构 –iSCSI –FCIP –FCoE 讨论IP SAN技术的市场驱动因素 列出IP SAN技术 列出iSCSI的组件和连接选项 描述iSCSI体系结构和拓扑结构 解释iSNS操作 描述FCIP的体系结构 IP SAN互联…